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ABSTRACT

%.--

A suspension system based on a band mechanism is investigated

to provide the free-free conditions for ground-based validation

testing of flexible space structures. The band-mechanism consists

of a noncircular disk with a convex profile, preloaded by

torsional springs at its center of rotation so that static

equilibrium of the test structure is maintained at any vertical

location; the gravitational force will be directly counteracted

during dynamic testing of the space structure. This noncircular

disk within the suspension system can be configured to remain

unchanged for test articles with the different weights as long as

the torsional spring is replaced to maintain the originally

designed frequency ratio of W/k s . Simulations of test articles

which are modelled as lumped-parameter as well as continuous

parameter systems, will also be presented.

Graduate Research Assistant.
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I. INTRODUCTION

_==

Satellites have generally been treated dynamically as rigid

bodies during their mission operations. However, interest in

orbiting very large space structures has resulted in the need to

maneuver and control flexible structures. This need is driving

research into both dynamic analysis and experimental verification

of large flexible space structures under zero-gravity. Several

large flexible space structures presently under investigation

includes the Mobile Satellite, the Large Deployable Reflector,

the Freedom Space Station and other SDI weapon systems. These

flexible space structures form the basis for much of present need

for various forms of preflight testing and analysis on the

ground.

A zero-gravity suspension environment is needed on the ground

for dynamic testing of low-frequency flexible space structures.

Several suspension devices [1-7] have been proposed in recent

years. Figure I shows a band mechanism that will be applied as a

suspension system. The dynamic interaction between this system

and the test article forms the basis of investigation that is

reported in this paper. The system features a noncircular disk,

around which a cable winds and unwinds as the disk rotates. This

disk has a special profile designed in conjunction with the load

it is to suspend, as well as the spring stiffness of the

torsional spring. The torsional spring loads the disk as the

latter rotates so that the torque exerted by the spring about the

disk axis of rotation is exactly counterbalanced by the force

exerted by the weight of the test article on the cable that winds

around the disk. In this way, the suspension system is capable of

keeping the test structure in static equilibrium at any vertical

location so that, on a static basis, the weightless effect of a

test structure in space can be simulated on earth through this

suspension system. A constraint on the system is that the profile
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of disk must be convex to allow the cable

edge.

to wind around its

Two test articles have been selected for this investigation.

The first test article, which consists of two masses and one

linear connecting spring, is suspended from an equilibrium

position. Such a lumped-parameter system is thus treated as a

simple two-degree-of-freedom discrete system whose flexibility is

characterized by the connecting spring. Another test article is a

flexible steel beam which is hung at its two ends in equilibrium

through two identical band drive suspension mechanisms.

Simulation of the suspension system with the test articles

originally at rest, are carried out with excitations such as an

initial displacement and an initial velocity (impulse) on the

masses. The characteristics of the flexible space structures are

then analyzed in conjunction with this band drive suspension

system.

2. EXISTING SUSPENSION SYSTEMS

Flexible space structures, in general, experience free-free

boundary conditions that are not readily replicable on earth.

Yet, to conduct the testing of such space structures, special

devices must be introduced. These devices are to support the

weight of structure without introducing any constraint forces

which in turn impose boundary conditions that do not simulate the

desired free-free boundary conditions in space. Several existing

approaches and devices [1-7] have been used or proposed for

suspending space structures for dynamic testing. Some of these

are discussed below:

(i) Long Cables:

The space structure is suspended from a high ceiling

through several long cables. Testing of the dynamics of the

structure is conducted on a horizontal plane so as to reduce

- 3 -
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the gravitational effect on the dynamics of the structure.

The overhead suspension system for the Langley Lunar Landing

Research Facility is a typical long-cable system designed to

support five-sixths of the weight of the Apollo Lunar Lander

Training Module.

(2) Air Pads:

Various designs based on the principle of reducing or

eliminating friction on the horizontal plane had been

proposed. Most common of which is the use of air pads that

acts as hydrostatic air bearings on which the structure is

suspended. Again, in such a design, the dynamic testing of

the structure is conducted on a horizontal plane.

(3) Pneumatic/Electric Device:

An external air tank under pressure drives a piston on

which, is suspended the test structure. Since the pneumatic

system incurs a positive spring stiffness, a linear DC motor

is incorporated to introduce a negative spring stiffness to

the pneumatic system so that, from the perspective of the

test article, the system has very low stiffness. However,

such an approach necessitates a very complex control system

to insure the proper operation of the suspension device. One

such device has been developed under the NASA/LaRC Pathfinder

Dynamic Scale Technology Program [2].

(4) Springs:

Different combinations of springs in different

configurations have been proposed to introduce a near zero

stiffness-rate for the suspension system. However, all such

configurations always result in a very small domain of

operation (stroke) under which the test structure could move

and yet see no constraining force.

- 4 -
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The experimental performances of the prior four suspension

systems have revealed some inadequacies in their usage. In the

case of long cables, the testing is constrained within the

horizontal plane while the gravitational effect of the structure

is compensated through several long cables. Thus, the entire

suspension system must occupy a large space with tall ceilings.

In the case of air pads, friction on the horizontal plane may

influence the performance of the testing. Moreover, the inertia

of air pads may also change the system dynamics particularly when

a large number of air pads are used for the large space

structure. Moreover, the planar design of air pads constrains the

feasibility of testing in the vertical direction. In the case of

the pneumatic/electric device [2], a complicated control system

is employed to produce a negative spring stiffness. A piston with

an external air tank is a cumbersome way when compared to the

single cable in this proposed suspension. Furthermore, the

controller design must be involved with a linear DC motor to

provide the appropriate feedback for the negative stiffness rate.

No matter how accurately the output is measured for feedback, the

influence of noise upon the dynamic performance cannot be

ignored. In the case of springs, the working domain of operation

with zero stiffness rate, is strictly limited so that the test

structure can move only within a very small stroke.

In the following section the

suspension device for testing

presented.

development of a band drive

different test articles will be

3. CONCEPT OF THE BAND DRIVE SUSPENSION SYSTEM

The problem of simulating space environments on earth

inspires the development of many suspension systems that can

counteract the gravitational effect on test structures, in the

vertical direction. A concept based on a band mechanism will be

the subject of investigation as to its applicability to dynamic

- 5 -



testing of space structures. These structures will be modelled as

lumped, as well as continuous parameter systems and a simulation

of the interactive dynamic behavior between the suspension system
and structures will be presented.

To begin, figures 2(a) and (b) show two arbitrary positions

of a test article in static equilibrium suspended by this
suspension device. The suspension device consists of:

F

%...

(I) a noncircular and specially profiled disk (D),

(2) a torsional spring (S),

(3) a thin cable (C),

(4) a smooth ring (R),

and (5) a test article (W).

Assume that a test article is originally suspended and kept in

static equilibrium at the position shown in Fig. 2(a) with the

thin cable C wrapped around the edge of the noncircular disk D.

This cable passes through the smooth ring R, and extends

downwards to suspend the test article W. This smooth ring R may

be assumed frictionless. To prevent the cable from driving the

disk D and hence unwinding, a torsional spring S is attached to

the axis of rotation of the disk D such that the torque exerted

on the disk D due to the load imposed by the test article W, is

balanced by the torque T in the torsional spring S, i.e.,
sI

Wr I (I)
= Tsl

where r I is the moment arm which is the perpendicular distance

from the disk rotational center to the cable. Then the

equilibrium equation of Eq. (I) can be further written as

ks(@s0+81 ) = Wr I (2)

- 6 -



where eso is the angle of preload in the torsional spring S and

e I is the of rotational displacement of disk D. Note that this

equation provides a explicit relationship between the angle of

rotation eI of noncircular disk D and the moment arm r I. Suppose

the test article W is displaced downwards a distance of tI from

its original equilibrium position as shown in Fig. 2(a). To

enable the test article W to remain in equilibrium at this new

position, illustrated in Figure 2(b), the moment arm r2 subtended

at the axis of rotation of the disk D has to be larger than r I.

This is because, to balance the increased torsional spring

torque, while the cable is at the same tension W, an increase in

the moment arm on the noncircular disk is needed, so that:

Wr 2 (3 )
= Ts2

In this new equilibrium position:

ks(es0+e 2) = Wr 2 (4)

where 8 2 is new rotational displacement of disk D as illustrated

in Fig. 2(b). Note that the moment arms rl, r2 are not the radial

distances to the points of tangency of the cable at the disk

profile, but are the perpendicular distances from the disk

rotational axis to the cable. Since the moment arm r2 is

different from rl, it is then possible to determine the profile

of the noncircular disk D such that a continuous change in the

moment arm is obtained for any given position of the test article

W, in such a way that, when displaced from one position of static

equilibrium to other position, the test article will remain in

v
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static equilibrium in its new position. That causes a weightless

situation which simulates that in a space environment.

The static characteristic of the suspension system is thus

governed by equations (1)-(4). Compared with prior suspension

systems discussed in this section where complicated electrical

devices or the huge facilities are needed, this band drive

suspension system is a rather simple mechanical system.

Obviously, the noncircular disk plays a very crucial role in such

a suspension system. The profile coordinates of the noncircular

disk will be derived by using envelope theory in conjunction with

the equilibrium equations given by Eqs. (1)-(4). This will be the

subject of discussion in the following section.

4. DESIGN OF THE DISK PROFILE

Envelope theory will be applied to generate the coordinates

of the disk profile given in Fig. 3. Using kinematic inversion,

an observer, fixed to the disk, would view the sequential

positions of the cable which tracks a sequence of straight

trajectories PoT0 , PIT1 , P2T2,..., PnTn as shown in Fig. 3, as

the disk rotates. The swinging point Pi (i=l,2,...,n) is observed

to lie on a circular path with a radius ra which is the distance

from the rotational center 0 to the ring R. These straight

trajectories, together when taken infinitesimally apart, gives

the envelope which forms the disk profile. Assuming that the

initial swinging point P0 is tangent to both the base circle 0

and the disk profile, the angle _0 which denotes the starting

rotational position of the string is given by:

_0 = sin-i (rb/ra) (5)
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Suppose that the string is viewed by the observer at center 0

while the disk rotates through an angle 8. Then the thin cable

will subtend an angle of _0+_ with the vertical, at the ring. The

increment angle _ is the rotational displacement of the string

trajectory PT from its initial orientation. There therefore

exists a relationship between disk rotation 8 and the string

angular displacement _. This relationship will be derived using

the equilibrium equations (2) and (4). From [8], a general

equation of the family of lines forming the envelope is governed

by a straight line which is:

y -- mx + b (6)

where the slope of the swinging string at disk angular position 8

is given by

m = tan (#+#0-@) (7)

and y-intercept of the string PT based on the Cartesian system in

Fig. 3, is

b = raCOS(8)tan(_+_0-@) + raSin(8) (8)

L

w

v

w

i

This general equation of the cable PT in Eq. (7) gives a family

of strings as a function of the disk angle of rotation 8. From

the theory of envelope, an envelope of the family of the straight

lines is governed by a equation:

F(x,y,@) = y - mx - b

= y - tan (#+#0-e) [x + raCOS(8)] -

= 0

raSin (@)

(9)
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Equation (9) is continuous and is a continuously differentiable

function in the coordinates x and y as well as in the variable 8.

Differentiating the equation (9) with respect to the disk angle 8

provides:

_F/_e = tan(_)(raSin(@)) - [x + raCOS(@)]sec2(_)(_#/_8-i)

- raCOS (@)

= 0 (i0)

where _ equals to #+#0-8. According to [8], the coordinates of

disk profile at a given angle 8 may be obtained by solving

equations (9) and (i0), i.e.:

x = -ra[Asin(_) + cos(e)]

where

(ii)

cos(e+_) (12)

Substituting Eq. (II) into Eq. (9) provides

y = ra[-Asin(_) + sin(@) ] (13)

Initially, the angles e and # equal zero so that the starting

coordinate of the noncircular disk becomes:

x = -2raSin (_0/2) ,

y = sin(2_0)/2

(14)

(15)

which coincides with the point at which the starting string PoT0

is tangent to the base circle in Fig. 3.

- i0 -



The rate of change in orientation of the string as a function

of disk rotation _/_8 can be determined by investigating the

relationship between the angles 8 and _. Based on Eq. (2) and

illustrated in Fig. 2, the equation of the initial equilibrium is

governed by:

Wrasin(_ 0) = ks@ 0 (16)

For the incremental angles of e and #, from the initial

orientation angles 80 and _0' the new equilibrium state becomes:

T

Wrasin(#0+_) = k s(e0+e) (17)

Subtracting Eq. (16) from Eq. (17) provides:

Wra[Sin(#0+#)-sin(_0 )] = kse (18)

which can be rewritten as

_; = sin -I [ks@/(Wr a) +sin (#0) ]-_0 (19)

Differentiating Eq. (19) with respect to the angle 8 yields

r

k
s

_#/_8 = WraCOS(_0+_) (20)

Then, the profile of the noncircular disk is determined by

substituting for _ and _#/_@ in Eqs. (19) and (20) into the

equations for the disk coordinates given by equations (ii) and

(13). Note that the profile of the disk must be convex.

- ii -



Several parameters are needed to generate the profile of
noncircular

readily be

according a

the

disk and they include ra, rb, ks, and W. It can

shown that each disk profile can be specified

parameter which is the ratio of the weight of the

test article to the stiffness of the torsional spring, i.e. W/k s .

This means that if testing is to be conducted for another test

article twice its original, the torsional spring stiffness must

be increased by the same factor so that the same disk can again

be used. Such a design therefore permits tremendous flexibility

since different loads can be used on this device, without the

need to fabricate a new disk every time a new test article with a

different mass, is used.

With the disk profile design, the dynamics of the test

articles can then be suspended on this band mechanism. The

dynamics of these test articles in the presence of a suspension

mechanism will be presented in the next section.

5. DYNAMICS OF TEST ARTICLES AND SUSPENSION SYSTEM

In simulating the test experiments of flexible space

structures, the test article may be modelled as a discrete or a

continuous system. Two models of test articles will be

considered: a lumped-parameter model and a continuous parameter

flexible steel beam. In the lumped-parameter model, a the test

article will be modelled as two masses and a connecting linear

spring suspended in equilibrium as shown in Fig. 4(b). Such a

lumped-parameter system is thus treated as a simple two-degree-

of-freedom discrete system whose flexibility is characterized by

the connecting spring. In the continuous parameter model, a

flexible steel beam is hung at its two ends and is suspended

through two identical disk suspension systems, as shown in Fig.

5. The profile of the noncircular disk in each case is developed

through Eqs. (II) and (13) to maintain the static equilibrium of

- 12 -



the test article at any vertical position. Simulation of the

ground-based validation testing will be implemented by providing

the test article, originally in equilibrium, with the excitations

such as an initial displacement or an initial velocity (impulse).

The characteristics of flexible space structures are then

analyzed together with the band mechanism suspension system.

5.1 Case 1: A Lumped-Parameter Model of a Test Article:

w

v

The flexible space structures can be discretized into a

series of lumped-parameter elements. The first test structure in

Fig. 4(b) illustrates a discrete lumped-parameter system which

approximates a flexible structure through the use of two masses

and one connecting spring. Table 1 shows the model parameters of

such a lumped-parameter system. The band drive suspension system

is connected to one of the masses, mass #i. Notice that the mass

in Eqs. (16)-(20) stands for the sum of the two masses, so that

care is needed while developing the profile of the noncircular

disk for this test article. Since this band drive mechanism

contains a very nonlinear function within Eqs. (ii) and (13), the

total system will be a nonlinear two degree-of-freedom dynamic

system even though the test article may be a linear system. A

derivation of the dynamic equations will be discussed below.

Assume that m I and m 2 are the masses of the two rigid bodies,

k 2 the spring stiffness between the two bodies, Ic the moment

inertia of the disk, ks the torsional spring rate and, r a the

distance between rotational center 0 and the ring R. Furthermore,

the displacements of the two masses are denoted by %1 and %2

respectively, while 8 and e denote the angular displacement and

angular velocity of the noncircular disk, and # is the

displacement angle of the cable. Then from Fig. 4(b), the static

equilibrium of the test article at any position is governed by

- 13 -



and

W = (ml+m2) g

k s (e+e0)
= raSi n (#+#0)

ks@ 0

= raSi n (#0) (21)

m2g k 2 (22)
= tSl

where %slindicates the static elongation of the spring, e0 is the

preioaded angle of torsional spring, and #0 denotes the initial

angular position of the cable. Note that the linear displacement

tl of mass m I must be consistent with disk angle e since the

suspension cable is directly connected to mass m I. Due to the

convexity of disk profile, the displacement tl in Fig. 4(b) can

be equated by integrating along the curvilinear path of the disk

profile through the rotation @ so that:

e

%1 = S
0

raSin(#+#0)d@

= k s [@2/2 + e0e]Iw (23)

w

Note that the position tl of mass m I is a parabolic function of

the disk angle @. In fact, equation (23) shows a function

generator which generates a parabolic curve of the displacement

tl in terms of @. Moreover, differentiating Eq. (23) with respect

to time yields

11 = [ks(e+@0 )IW]0 (24)

- 14 -
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which indicates the velocity relation between 11 and 6.

Therefore, the position and velocity of mass m I can be replaced

by the disk angle and angular velocity through Eqs. (23) and

(24).

Applying Lagrange's equation of motion

function for this system is given by

[9], the Lagrangian

L = T - V (25)

where the kinetic energy T and the potential energy V are:

T : {Ic82 + ml[ks(g+80)/w]2e2 + m21.22}/2 , (26)

V = ks (@+e0) 2/2 + k2[ks(@2/2 + e0@)/W -

- mlgk s(82/2 + 80@)/W - m2g% 2 (27)

Based on the Lagrangian from Eq. (25), the dynamic equation of

motion in matrix form may be written in the following form:

L

M_'+ K_ = f (28)

where _ denotes the state vector [8 %2 ]T

matrices and nonlinear force vector become

• The inertia, stiffness

M = I Ic+ml[ks(0+@0)/W]20 m201 ' (29)

- 15 -
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w

w

w

K

ks+ksk2(ks0_/W-t

-ksk280/W
)/W -ksk2@0/W 1 (30)

s I

k 2

f = [ fl f2 ]T, (31)

where

fl = mlgks (0+00)/W-ks00+ksk2 [0%2+ts 100-ks@3/2/W-

ksS082/W _ksS082/2/W_m I (ks/W) 2 (0+00) _2]

and

f2 ffiksk2@2/(2W)

Note that the nonlinearities occur in both the inertia matrix M

and the nonlinear forcing function vector f due to the kinematic

nonlinearity arising from the noncircular disk profile. The

displacement and velocity of mass #I may be determined from Eqs.

(23) and (24) during the simulation process even though they do

not appear explicitly in Eq. (28).

The characteristics of such a lumped-parameter model may then

be observed with different initial conditions placed on the

lumped masses. For comparison purposes, the dynamic responses of

the same test article will be re-simulated using the soft spring

suspension system shown in Fig. 4(a). The stiffness of the soft

spring has been chosen to be equivalent to the torsional spring

rate in the disk suspension system, i.e. kl=ks/r _. The governing

linear dynamic equation for the suspension system in Fig. 4(a)

can be found in [i0] will not be included in this paper. A second

model of the test article is based on a continuous parameter

system. The second model will be the subject of investigation in

the section below.
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5.2 Case 2: Flexible Steel Beam : (A Continuous-Parameter Model)

The band mechanism suspension system may also be applied for

the dynamic testing of continuous parameter models of flexible

structures as well. Figure 5 demonstrates a uniform rectangular

cross-section steel beam hung on two identical disk suspension

systems at its two ends. Testing of such a flexible beam is aimed

at flexural vibrational behavior. The model parameters of the

flexible steel beam are given in Table 2. Assume that the total

weight of the flexible beam in static equilibrium is evenly

suspended by two identical disk suspension systems. Then, the

profile of the noncircular disk is developed using half the

weight of the flexible beam when Eqs. (18) and (20) are applied.

Assume that the rigidity of the flexible beam is given by EI

product, its density p, the length L, and the displacement of the

beam at the left end is denoted by %1" The local coordinates x l-

Yl are located at left end of the flexible beam for determining

the local deflection of the beam. The technique of the modal

analysis [11,12] will be applied to discretize the beam

deflection into a series of flexural modes. The flexible beam

deflects during bending vibration about its deformed static

equilibrium shape caused by gravity. As will be seen in the

simulation of the beam behavior, only odd modes will be excited

so that the flexural deflection of this floating hinged-hinged

beam in the coordinates xl-Y 1 is symmetrical about its center of

this floating gravity. A setup of such a system is shown in Fig.

5.

The flexible beam can be maintained in static equilibrium as

long as equations (16) and (17) is satisfied for half the weight

of the flexible beam. The displacements and velocities of the

flexible beam at two ends can be substituted by the disk angle 8

- 17 -



and angular velocity e in Eqs. (23) and (24) derived in the

lumped-parameter system• For the flexible beam as shown in Fig.

5, the kinetic energy T and the potential energy V can be

expressed as:

2T = 2Ice2 + ]_ p[ %1 - Yl ] "[ %1 - Yl ]dXl' (32)

w

r_

2V = 2ks[8+@0 ]2 + _ EI{ Yl, XlXl }2 dx I

where x I is a vector at the root end, and

longitudinal x I axis of the flexible

distributed coordinates are expanded in an

assumed mode shapes so that:

(33)

Yl(Xl,t) = _T(x I) q(t),

_T = [_l,...,_n ]

basis

is tangent to the

beam. Moreover, the

orthogonal of

and qT = [ql,...,qn ] (34)

m

o _

where _(x I) is a vector of assumed mode shapes relative to a

spatial coordinates derived from the hinged-hinged boundary

condition problem, q(t) is a generalized coordinate vector

[11,12], and n is the number of assumed modes.

Inserting Eq. (34) into Eqs. (32) and (33) yields

• n n . . n . .

2T = 2Ic e2 + p_[2 + i--Zl j_l mijqiqj - 2i=Zl hiqiIl' (35)

n n

2V = 2ks[e+eO ]2 + i_ 1 j_iKijqiqj

where

- 18 -
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m, , _ [

_-3 0

T,
P. = J"

1 0

P_i (Xl)_j (Xl) dXl'

PXl_/i(x I) dx I,

[,

hi = J" P¥1(Xl) dXz,
0

EI_i,XlXl_J,XlXl dx I
for i, j=l, 2, .... ,n

= =

• i

w

Therefore, the Lagrangian for the system, as given by Eq.

(25), can then be obtained. From Eqs. (35) and (36), the

displacement and velocity at the beam ends are converted into the

angular displacement and angular velocity of the disk. To

simplify the state variables in the above equations, denote _0=0,

_i=qi , for i=i,2, .... ,n. Using the Lagrange's equations of motion

[9], the equation of motion of the system may be written as:

w

where the state vector _T=[0, ql,q2 , .... ,qn ]. The inertia matrix

M, the stiffness matrix K and the nonlinear force vector f are

given by:

M

2ic+4P[ (ks/W) 2 [0+00] 2
symmetria

-2ks[8+80]hT/W_pLI-^ '

(38)

K = Diag [ 0, p_2 ] ;
O) = Diag [ _)i''''' _n ] ' (39)
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w

f

-4 p[.(ks/W) 2 [e+e0]62 I
2ks82h

(40)

A

where X is an nxn identity matrix and _i

modal frequencies associated with the

functions _i(Xl), used in discretizing the

(i=l,...,n) are the

hinged-hinged shape

deflection of the

flexible beam. The nonlinearities of the system all reside within

the inertia matrix and the nonlinear force vector. The

displacement and velocity at the ends of the beam can be computed

directly from Eqs. (23) and (24) during the simulation. In this

way, symmetric motions of the flexible beam may then be tested

using two identical disk suspension systems.

6. SIMULATION RESULTS

The dynamics of test articles have been derived in the

previous section, and they include a lumped-parameter system as

well as a continuous-parameter system. One disk suspension system

is required for the lumped-parameter system while two identical

disk suspension systems are needed to suspend the flexible beam

at its two ends. For each test article, two different excitations

to the system will be implemented. The first is with an initial

displacement and the second, with an initial velocity; with a

total of four simulations to verify the feasibility of this disk

suspension system. A soft spring will be employed as a suspension

system (see Fig. 4(a)) for the lumped-parameter system and its

simulations are then compared to those on the disk suspension

system.

The parameters of disk suspension system which will be used

for simulations are shown in Tables 1 and 2. A convex profile of

noncircular disk is then drawn by evaluating Eqs. (II) and (13).
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Figure 6 shows the resulting profile of the noncircular disk with

several spokes which can eliminate its moment of inertia. The

disk radius varies from 3 inch to 9.5 inch. In the middle of disk

thickness, a curvilinear groove is cut along the edge of disk for

the winding cable. The range along the disk edge allows the disk

rotate about 200 degrees. Such a noncircular disk in Fig. 6 will

be used to implement the following dynamic simulations.

6.1 Simulations of the Lumped-Parameter Model:

Table 1 summarizes the model parameters of a lumped-parameter

system. Two kinds of suspension systems, a band mechanism and

spring suspension system, will be used. In both types of

suspension systems, the test article is hung in static

equilibrium by connecting mass #I to the suspension system

through a thin cable. In the first simulation, -0.2 inch and 0.2

inch of initial displacements are specified to masses #i and #2

respectively but with no initial velocity. Figures 7(a)-(f) are

the simulation results of the two suspension systems. The results

associated with the disk suspension system are indicated by a

solid line while those of spring suspension system, by a dotted

line. Figures 7(a) and 7(b) show the angular displacement and

angular velocity of the disk respectively of the disk suspension

system. Both angular displacement and angular velocity oscillate

with the natural frequency of the test article. The displacement

and velocity of mass #i are respectively shown in Figs. 7(c) and

7(d), while the displacement and velocity of mass #2 are given in

Figs. 7(e) and 7(f) respectively. All the trajectories of masses

#i and #2 represent pure oscillatory motions about their

equilibrium positions. The cable which connects the test article

and the disk is found always in tension. It can be seen that

there is no difference between disk suspension system and the

simple spring system under specifications of initial

displacements. The spring in the spring system may be too soft
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due to the equivalent relationship, kl=ks/ b so that it may not

be able to suspend heavy test articles. The spring stiffness for

this spring suspension system cannot be arbitrarily increased

because, that will distort the natural frequency of the test

article. The initial-displacement results provide an insight in

verifying the validity of disk suspension system when compared to

the conventional spring suspension system. It also shows that the

results correspond to the anticipated vibrational characteristics

of mass #i and #2 in space, as well.

The second simulation of a lumped-parameter system deals with

the dynamic response subjected to initial velocity specification.

An initial velocity of 2 inches per second acts on mass #2 to

excite the whole system to move as if under an impulse. Figure

8(a) shows the dynamic history of the disk angle. It has an

oscillatory motion superimposed on the dropping angular

displacement trajectory. Figure 8(b) illustrates this oscillatory

motion of the disk but with an average angular velocity 9.5 deg/

sec superimposed upon that oscillation. The displacements and

velocities of masses #I and #2 are shown in Figs. 8(c)-(f). In

Figs. 8(c) and 8(e), the solid lines associated with disk

suspension system show that the entire test article is dropping

at a constant velocity while masses #I and #2 which model the

test article are oscillating during this downward motion. This

shows that the impulse response indeed corresponds to that in a

zero-gravity condition, with the use of this disk suspension

system. Figures 8(c) and 8(e) also show that the spring

suspension system on the other hand, does not satisfy this

anticipated motion trajectory of the test article (masses). The

velocities of masses shown in Fig. 8(d) and 8(f), confirm that

the masses in the disk suspension system on the average, do not

accelerate. The pure oscillations of both the mass velocities

indicate an average constant velocity of 1 in/sec rather than

zero implying that the constant velocities are indeed due to the
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impulse response. This implication shows that the entire test

article beneath the disk suspension system is not accelerated due

to the initial impulse. Such a phenomenon is consistent with the

behavior deduced from mass displacements in Fig. 8(c) and 8(e).

Note that the masses oscillate at 180 degrees out of phase with

each other. These figures also show that the simple spring

suspension system do not result in a correct motion for the

masses in response to an initial impulse.

Figures 9(a)-(f) thus ensure that this disk suspension system

is capable of simulating the dynamic behavior of the test article

subjected to an impulse. The test body accordingly translates at

a constant velocity. When the mass is imposed with an initial

velocity V 0, (equivalent to an impulse) the test article will

continue to travel at that same velocity V 0 over a considerable

range of travel. This is because the tension in the cable is

constant and is exactly equal to the weight of the test article,

so that there is no net driving force on the article during its

entire range of motion. With that observation, it therefore leads

to a constant velocity of the test article and in so doing,

exactly simulates the motion of an object in space.

6.2 Simulations of the Flexible Steel Beam:

In this simulation experiment, two identical disk suspension

systems are employed to suspend a flexible beam that has the same

weight as in the lumped-parameter model of the previous section.

The model parameters of a flexible steel beam are listed in Table

2. Three hinged-hinged flexible modes will be assumed for the

flexible steel beam. In this simulation, the first and third

modes will be specified with initial values. This means that the

flexible beam is originally bent into a symmetric deformed

configuration about its static equilibrium configuration, and

then released from rest. Hence, the first and third modes are
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excited by this initial deformation. The simulation results are

given in Figs. 9(a)-(f). Figures 9(a) and 9(b)

displacement and angular velocity of the disk while figures 9(c)

and 9(d), the deflection and velocity of the beam at its center

of gravity. Figures 9(e) and 9(f) on the other hand, show the

deflection and velocity of the beam at both ends of the beam. The

rotation of the disk is consistent with the flexural vibration of

the beam at the two ends. The odd modes, as anticipated, are very •

active as can be seen from results of displacement and velocity

in the figures. This is due to the symmetry of the deflection

about a plane through the center of gravity of the beam. In Fig.

9(c), the displacement at beam's c.g. implies that the beam

oscillates about its original static equilibrium configuration

during the process. Hence, the multi-mode vibration of a flexible

beam can be implemented under the disk suspension system.

Finally, a fourth simulation has been conducted with the

flexible beam subjected to an initial impulse. Simulation results

are shown in Figs. 10(a)-(f) including the disk angle, angular

velocity of disk, beam's c.g. displacement and velocity, and

beam's end displacement and velocity. The third mode is more

pronounced in the velocity plots and the amplitude of beam's

deflection at the center of gravity is larger than those at both

ends. The linear slope in the oscillatory behavior in Figs. 10(c)

and 10(e) indicates a constant-speed motion associated with a

rigid-body mode. The flexible beam is moving upwards at a

constant speed while simultaneously vibrating with respect to the

local coordinates xl-Y I. The constant speed is approximately 0.7

in/sec. In fact, these impulse results of a beam implies a

compound motion of the flexible space structure that includes a

constant-speed rigid-body motion with flexible-body vibration

superimposed on it.

The impulse response of a flexible structure has shown to be

consistent in the use of this disk suspension device. The entire
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test structure will travel at a constant velocity with a rigid-

body motion while the traveling beam oscillates, with its

flexible modes about the moving local coordinate system. The

similarities of the second and fourth simulation results

validates the applicability of this disk suspension system for

both discrete and continuous models.

7. CONCLUSION

This paper has presented a band mechanism that is to be used

as a ground-based suspension system to assess the characteristics

of flexible space structures that operate in a weightless

environment. This mechanism is characterized by a noncircular

disk with a convex profile constrained into rotational motion, by

a torsional spring. The suspension system is constructed to

counteract the weight of the test article by using a specially

shaped disk in conjunction with an appropriate torsional spring.

The basic principle behind this suspension system is to maintain

static equilibrium of the test article at any given vertical

position. The convex profile of the disk is determined using

envelope theory. It has also be shown that this suspension system

is applicable for test articles with the different weights

without the need to change the disk profile; the torsional spring

rate has to be adjusted to maintain the static equilibrium

condition of the new test article.

This mechanism has shown, under numerical simulation, to be

applicable and suitable for ground-based dynamic testing of test

articles, be they discrete or continuous models. Two kinds of

test articles have been chosen for the simulation, a lumped-

parameter system and a flexible steel beam. The lumped-parameter

element is composed of two masses and a connecting spring which

provides a single-mode vibration. Simulation results indicate

that the characteristics of the flexible space structures can be

precisely tested under this disk suspension system. It has also
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shown to be capable of permitting a constant-speed motion

superimposed with flexural vibration in an impulse response•

These simulation results provide very useful insights in building

up the experimental equipment at NASA-Langley.
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Table 1: Parameters of a lumped-parameter model with disk

suspension system

w

(a) Disk suspension system:

ra = 12 in rb = 6 in

k s = 0.5 ib/rad ic = 0.01 ib-in 2

(b) Test article: (A lumped-parameter model)

m I = 12 ib m 2 = 12

k2 = 1 ib/in

ib

Table 2: Parameters of a flexible steel beam with disk

suspension systems

(a) Disk suspension systems:

r a = 12 in

k s = 0.5 ib/rad

rb = 6 in

I = 0.01 ib-in 2
c

(b) Test article: (A flexible steel beam)

= 6.562 ft

EI = 74.8953 lb-ft 2

p = 0.30480 ib/in

h = 1.614xi0 -2 in
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NOMENCLATURE

: parameter for disk coordinates

: y-intercept of a general straight line

: cable

: noncircular disk

: rigidity

: a continuous function of envelope theory

: nonlinear force vector

: first element of force vector f

: second element of force vector f

: gravitational constant

: moment inertia of noncircular disk

: stiffness matrix

: torsional spring stiffness

: spring stiffness within the soft spring

system

: spring stiffness of a linear spring

: Lagrangian

: length of the beam

: inertia matrix

: slope of a general straight string

: two masses associated with two rigid bodies

: number of vibrational modes

: disk rotational center

: generalized coordinate vector

: smooth ring

: distance between rotational center and ring

: original length of a swinging string

: moment arms of noncircular disk

: torsional spring
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T

T
s1

V

v o

W

x,y

x 1

Yl (Xl' t)

xl,Y 1

: kinetic energy

, Ts2 : torques due to loading from test structures

: potential energy

: initial velocity

: weight of test structure

: coordinates of disk profile

: x coordinate of the local beam coordinate

: y coordinate of the local beam coordinate

: vectors tangent to xl-Y 1 coordinates

¢

¢0

_(x I)

11

I
s 1

t1 ,

%
I'

e

es 0

e o

6

co

t 2

l 2

: rotational displacement of the string PT

: initial orientation of the string PT

: vector of mode shapes

: vector along the displacement 11

: initial elongation of a linear spring

: positions of two masses

: velocities of two masses

: angular displacement of disk

: initially preloaded disk angle

: preloaded angle of torsional spring

: angular velocity of disk

: state vector

: modal frequency vector
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